3.3.85 \(\int \frac {\sqrt {\sec (c+d x)} (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\) [285]

Optimal. Leaf size=145 \[ \frac {2 C \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {(3 A-5 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}} \]

[Out]

2*C*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-1/2*(A+C)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*
sec(d*x+c))^(3/2)+1/4*(3*A-5*C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2)
)/a^(3/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.26, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {4170, 4108, 3893, 212, 3886, 221} \begin {gather*} \frac {(3 A-5 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {2 C \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Sec[c + d*x]]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*C*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) + ((3*A - 5*C)*ArcTanh[(Sqrt[a]*Sqr
t[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)*Sec[c + d*
x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3893

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*b*(d/
(a*f)), Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4108

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rule 4170

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-a)*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*
(2*m + 1))), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b
*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x
] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sqrt {\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {\int \frac {\sqrt {\sec (c+d x)} \left (-\frac {1}{2} a (3 A-C)-2 a C \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(3 A-5 C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}+\frac {C \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx}{a^2}\\ &=-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(3 A-5 C) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}-\frac {(2 C) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^2 d}\\ &=\frac {2 C \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {(3 A-5 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(795\) vs. \(2(145)=290\).
time = 7.33, size = 795, normalized size = 5.48 \begin {gather*} \frac {\cos ^2(c+d x) (1+\sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \left (\frac {(3 A-C) \cos ^2(c+d x) \left (\log \left (1-2 \sec (c+d x)-3 \sec ^2(c+d x)-2 \sqrt {2} \sqrt {\sec (c+d x)} \sqrt {1+\sec (c+d x)} \sqrt {-1+\sec ^2(c+d x)}\right )-\log \left (1-2 \sec (c+d x)-3 \sec ^2(c+d x)+2 \sqrt {2} \sqrt {\sec (c+d x)} \sqrt {1+\sec (c+d x)} \sqrt {-1+\sec ^2(c+d x)}\right )\right ) (1+\sec (c+d x)) \sqrt {-1+\sec ^2(c+d x)} \sin (c+d x)}{2 d (1+\cos (c+d x)) \sqrt {2-2 \cos ^2(c+d x)} \sqrt {1-\cos ^2(c+d x)}}+\frac {C \cos ^2(c+d x) \left (-8 \log (1+\sec (c+d x))+8 \log \left (\sqrt {\sec (c+d x)}+\sec ^{\frac {3}{2}}(c+d x)+\sqrt {1+\sec (c+d x)} \sqrt {-1+\sec ^2(c+d x)}\right )+\sqrt {2} \left (-\log \left (1-2 \sec (c+d x)-3 \sec ^2(c+d x)-2 \sqrt {2} \sqrt {\sec (c+d x)} \sqrt {1+\sec (c+d x)} \sqrt {-1+\sec ^2(c+d x)}\right )+\log \left (1-2 \sec (c+d x)-3 \sec ^2(c+d x)+2 \sqrt {2} \sqrt {\sec (c+d x)} \sqrt {1+\sec (c+d x)} \sqrt {-1+\sec ^2(c+d x)}\right )\right )\right ) (1+\sec (c+d x)) \sqrt {-1+\sec ^2(c+d x)} \sin (c+d x)}{d (1+\cos (c+d x)) \left (1-\cos ^2(c+d x)\right )}\right )}{2 (A+2 C+A \cos (2 c+2 d x)) (a (1+\sec (c+d x)))^{3/2}}+\frac {\sqrt {(1+\cos (c+d x)) \sec (c+d x)} (1+\sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \left (\frac {\sec \left (\frac {c}{2}\right ) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {c}{2}\right )+C \sin \left (\frac {c}{2}\right )\right )}{2 d}+\frac {\sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-A \sin \left (\frac {d x}{2}\right )-C \sin \left (\frac {d x}{2}\right )\right )}{d}+\frac {\sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{2 d}-\frac {(A+C) \tan \left (\frac {c}{2}\right )}{d}\right )}{(A+2 C+A \cos (2 c+2 d x)) \sec ^{\frac {3}{2}}(c+d x) (a (1+\sec (c+d x)))^{3/2}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[Sec[c + d*x]]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(Cos[c + d*x]^2*(1 + Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2)*(((3*A - C)*Cos[c + d*x]^2*(Log[1 - 2*Sec[c +
d*x] - 3*Sec[c + d*x]^2 - 2*Sqrt[2]*Sqrt[Sec[c + d*x]]*Sqrt[1 + Sec[c + d*x]]*Sqrt[-1 + Sec[c + d*x]^2]] - Log
[1 - 2*Sec[c + d*x] - 3*Sec[c + d*x]^2 + 2*Sqrt[2]*Sqrt[Sec[c + d*x]]*Sqrt[1 + Sec[c + d*x]]*Sqrt[-1 + Sec[c +
 d*x]^2]])*(1 + Sec[c + d*x])*Sqrt[-1 + Sec[c + d*x]^2]*Sin[c + d*x])/(2*d*(1 + Cos[c + d*x])*Sqrt[2 - 2*Cos[c
 + d*x]^2]*Sqrt[1 - Cos[c + d*x]^2]) + (C*Cos[c + d*x]^2*(-8*Log[1 + Sec[c + d*x]] + 8*Log[Sqrt[Sec[c + d*x]]
+ Sec[c + d*x]^(3/2) + Sqrt[1 + Sec[c + d*x]]*Sqrt[-1 + Sec[c + d*x]^2]] + Sqrt[2]*(-Log[1 - 2*Sec[c + d*x] -
3*Sec[c + d*x]^2 - 2*Sqrt[2]*Sqrt[Sec[c + d*x]]*Sqrt[1 + Sec[c + d*x]]*Sqrt[-1 + Sec[c + d*x]^2]] + Log[1 - 2*
Sec[c + d*x] - 3*Sec[c + d*x]^2 + 2*Sqrt[2]*Sqrt[Sec[c + d*x]]*Sqrt[1 + Sec[c + d*x]]*Sqrt[-1 + Sec[c + d*x]^2
]]))*(1 + Sec[c + d*x])*Sqrt[-1 + Sec[c + d*x]^2]*Sin[c + d*x])/(d*(1 + Cos[c + d*x])*(1 - Cos[c + d*x]^2))))/
(2*(A + 2*C + A*Cos[2*c + 2*d*x])*(a*(1 + Sec[c + d*x]))^(3/2)) + (Sqrt[(1 + Cos[c + d*x])*Sec[c + d*x]]*(1 +
Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2)*((Sec[c/2]*Sec[c/2 + (d*x)/2]^2*(A*Sin[c/2] + C*Sin[c/2]))/(2*d) +
(Sec[c/2]*Sec[c/2 + (d*x)/2]*(-(A*Sin[(d*x)/2]) - C*Sin[(d*x)/2]))/d + (Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(
d*x)/2] + C*Sin[(d*x)/2]))/(2*d) - ((A + C)*Tan[c/2])/d))/((A + 2*C + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(3/2)*(
a*(1 + Sec[c + d*x]))^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(313\) vs. \(2(120)=240\).
time = 22.02, size = 314, normalized size = 2.17

method result size
default \(\frac {\sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \left (2 C \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sin \left (d x +c \right )+2 C \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sin \left (d x +c \right )+3 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )+A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )-5 C \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )+C \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )-A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-C \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )-1\right )}{4 d \sin \left (d x +c \right )^{3} a^{2}}\) \(314\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/4/d*(1/cos(d*x+c))^(1/2)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)*(2*C*2^(1/2)*arctan(1/4*(-2/(1+cos(d
*x+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x+c))*2^(1/2))*sin(d*x+c)+2*C*2^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*
(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*sin(d*x+c)+3*A*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)+
A*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)-5*C*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)+C*(-2/(
1+cos(d*x+c)))^(1/2)*cos(d*x+c)-A*(-2/(1+cos(d*x+c)))^(1/2)-C*(-2/(1+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c)))^(
1/2)/sin(d*x+c)^3*(cos(d*x+c)^2-1)/a^2

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 3153 vs. \(2 (120) = 240\).
time = 0.70, size = 3153, normalized size = 21.74 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/4*((3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x +
 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 12*(log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/
2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + 3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2
+ 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) +
 1))*sin(2*d*x + 2*c)^2 + 12*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1
) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c)^2 + 2*(6*(
log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2
 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2
*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(
1/2*d*x + 1/2*c) + 1) - 2*sin(3/2*d*x + 3/2*c) + 2*sin(1/2*d*x + 1/2*c))*cos(2*d*x + 2*c) + 4*(3*log(cos(1/2*d
*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*
d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 2*sin(1/2*d*x + 1/2*c))*cos(d*x + c) + 4*(3*(log(cos(1/2*d*x +
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1
/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c) + cos(3/2*d*x + 3/2*c) - cos(1/2*d*x + 1/2*c))*sin(2*d*x +
 2*c) - 4*(2*cos(d*x + c) + 1)*sin(3/2*d*x + 3/2*c) + 8*cos(3/2*d*x + 3/2*c)*sin(d*x + c) - 8*cos(1/2*d*x + 1/
2*c)*sin(d*x + c) + 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*lo
g(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 4*sin(1/2*d*x + 1/2*c))*A/((
sqrt(2)*a*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*a*cos(d*x + c)^2 + sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*sin(2*d
*x + 2*c)*sin(d*x + c) + 4*sqrt(2)*a*sin(d*x + c)^2 + 4*sqrt(2)*a*cos(d*x + c) + 2*(2*sqrt(2)*a*cos(d*x + c) +
 sqrt(2)*a)*cos(2*d*x + 2*c) + sqrt(2)*a)*sqrt(a)) + (4*(sin(2*d*x + 2*c) + 2*sin(1/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c))))*cos(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + 4
*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*sin(2
*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2(sin(2*d*x + 2*c),
 cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c))) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2
*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 2*(sqrt(2)*cos(2*d*x + 2*c)
^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)
*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c))) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))
^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c))) - 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) + 2*(sqrt(2)*cos(2*d*x
+ 2*c)^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*s
qrt(2)*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c))) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c))) + 2*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 2*(sqrt(2)*cos(
2*d*x + 2*c)^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2
 + 4*sqrt(2)*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arctan2
(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c))) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*
d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c))) - 2*sqrt(2)*sin(1/...

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 269 vs. \(2 (120) = 240\).
time = 2.35, size = 609, normalized size = 4.20 \begin {gather*} \left [-\frac {\sqrt {2} {\left ({\left (3 \, A - 5 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A - 5 \, C\right )} \cos \left (d x + c\right ) + 3 \, A - 5 \, C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left (A + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 4 \, {\left (C \cos \left (d x + c\right )^{2} + 2 \, C \cos \left (d x + c\right ) + C\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {\sqrt {2} {\left ({\left (3 \, A - 5 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A - 5 \, C\right )} \cos \left (d x + c\right ) + 3 \, A - 5 \, C\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \, {\left (A + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 4 \, {\left (C \cos \left (d x + c\right )^{2} + 2 \, C \cos \left (d x + c\right ) + C\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(sqrt(2)*((3*A - 5*C)*cos(d*x + c)^2 + 2*(3*A - 5*C)*cos(d*x + c) + 3*A - 5*C)*sqrt(a)*log(-(a*cos(d*x +
 c)^2 + 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*
x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*(A + C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(
cos(d*x + c))*sin(d*x + c) - 4*(C*cos(d*x + c)^2 + 2*C*cos(d*x + c) + C)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*c
os(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x +
c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c)
+ a^2*d), -1/4*(sqrt(2)*((3*A - 5*C)*cos(d*x + c)^2 + 2*(3*A - 5*C)*cos(d*x + c) + 3*A - 5*C)*sqrt(-a)*arctan(
sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*(A + C)*sqrt
((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 4*(C*cos(d*x + c)^2 + 2*C*cos(d*x + c) +
 C)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(
d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3007 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C/cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(((A + C/cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________